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We combine experimental, theoretical and numerical efforts to investigate the turbu-
lent wake far behind a surface ship at model scales. Experimental measurements using
digital particle image velocimetry (DPIV) are performed for the wakes of three towed
hulls with beam-to-draught ratios b/d = 1, 2, 6. Based on model speed and beam, the
Reynolds and Froude numbers are O(103) and O(10−2) respectively. Distinct surface
features associated with persistent surface-normal vorticity have been identified, which
are characterized by large-scale meandering structures. Both lateral and longitudinal
scales of the meandering are quantified, with the former found to increase as b/d
decreases and the latter independent of b/d. Based on measurements at multiple hori-
zontal and vertical planes, profiles of the mean flow and fluctuation intensity for each
velocity component are obtained. To understand the turbulence transition mecha-
nism, an Orr–Sommerfeld stability analysis (OS) is formulated for the wake flow with
free-surface boundary conditions, and solved by using a fourth-order finite-difference
scheme. Unstable modes antisymmetric to the wake centre-plane are identified. Con-
sistent with the experimental results, the growth rates of unstable modes increase
substantially as b/d decreases, while the dependence of meandering wavelengths on
b/d is found to be weak. Finally, we perform direct numerical simulation (DNS)
of Navier–Stokes equations for the wake flow. The growth rates of unstable modes
agree well with the predictions by OS analysis. Compared with experiments, DNS
accurately captures the surface-normal vorticity signatures, the meandering features,
as well as statistics of turbulence intensity. We also obtain from DNS a detailed
description of enstrophy, turbulence length scales, and vortex structures for the wake
flow.

1. Introduction
Ship wake flows have been of interest in fluid mechanics for a long time. In the

past, the classical Kelvin wave pattern has received most attention and has been
extensively investigated. Recently, however, the turbulent wakes behind ships have
attracted special interest, largely due to the need to interpret the radar observations of
ship wakes (cf. Munk, Scully-Power & Zachariasen 1987; Sarpkaya 1996). Synthetic
Aperture Radar images reveal the existence of a narrow V-like wake, with a half-
angle typically between 2◦ and 3◦, which extends some 20 km behind a surface ship.
This observation does not belong to the Kelvin wake pattern and is believed to
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be related to short-wave-damping phenomena involving free-surface turbulent flows,
surface-active materials, and the redistribution of surface impurities by currents and
bubbles.

Our ability to interpret phenomena such as the observed narrow V-shaped ship
wakes is much constrained by limited understanding of the relevant fluid mechanics
of the turbulent flow in the wake and its interactions with the free surface. The
study of free-surface turbulence (FST) is an arduous task. In addition to the usual
complexity of turbulence study, it also possesses additional difficulties such as the
complex geometry of a deformable free surface, the highly nonlinear wave–turbulence
interaction, the effects of surface vorticity, and surfactant dynamics.

In this paper we perform a mechanistic study of turbulent free-surface wake
flows behind a towed ship model. Our object is to reveal the fundamental physics
rather than the engineering applications. As a first step towards the understanding
of the turbulent wake, we restrict our attention to simple ship hull geometries at
model scales with corresponding Reynolds and Froude numbers low enough such
that accurate whole-field laboratory measurements and (direct) numerical simulations
can be performed. To provide a comprehensive picture and to cross-validate the
predictions we make, we employ a coordinated effort using quantitative whole-field
measurement, Orr–Sommerfeld stability analysis, and direct numerical simulation for
the same geometry and at the same Reynolds and Froude scales.

For a long time, traditional experimental studies of turbulent flow had perforce
relied upon flow visualization for flow structure information and had used conditional
sampling methods to obtain flow statistics information. A significant achievement of
modern experimental fluid mechanics is the invention and development of techniques
for the quantitative measurement of the whole, instantaneous flow field (Adrian 1991).
The digital particle image velocimetry (DPIV) technique makes it possible to measure
a large number of simultaneous velocity components in a two-dimensional region
of the fluid flow. This has proven to be a powerful tool for FST research (see e.g.
Gharib, Dabiri & Zhang 1994). In this work, we use DPIV to perform quantitative
whole-field measurements of free-surface turbulent wakes on multiple horizontal and
vertical planes. These allow us to identify the general features of the wake, and to
provide the initial conditions and data for direct quantitative comparisons at later
times for the subsequent theoretical stability analyses and numerical simulations.

The Orr–Sommerfeld (OS) stability analysis is another powerful tool in the study
of free-surface turbulent wakes. The linear stability analysis clarifies some of the
mechanisms by which turbulence is generated and maintained. Although the pro-
cesses in the fully developed turbulence, where the nonlinearity plays an essential
role, are much more complicated than the linear instability processes, the latter nev-
ertheless give important insights into the fluctuations which may arise in a flow.
For example, Triantafyllou & Dimas (1989) have shown that the existence of a free
surface drastically alters the turbulence transition properties of a two-dimensional
shear flow. In this study we formulate and solve the Orr–Sommerfeld equations for
the three-dimensional wake flow subject to the free-surface boundary conditions. As
will be shown, the stability analysis facilitates the explanation of experimental ob-
servations, the construction of initial conditions for numerical simulations, and the
cross-validation between the two.

Finally, we employ direct numerical simulation (DNS) in this study of the free-
surface turbulent wake. With the rapid growth in both the size and speed of compu-
ters, numerical simulation has become an indispensable tool in turbulence research.
A number of DNS have been performed for free-surface turbulent flows: Lam
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Figure 1. Schematic of the free-surface turbulent wake field behind a towed ship model:
(a) top view and (b) side view.

& Banerjee (1988), Handler et al. (1993), Komori et al. (1993), Borue, Orszag &
Staroselsky (1995), Perot & Moin (1995), Walker, Leighton & Garza-Rios (1996)
and Shen, Triantafyllou & Yue (1999), to cite a few. Numerical simulation has the
advantage of providing whole-field (spatial and temporal) data for all the physical
quantities computed. Once robust numerical capability is established, substantial
information on the statistical, structural and dynamical properties of the flow field
can be obtained.

In the present paper we combine experimental (DPIV), theoretical (OS), and
numerical (DNS) approaches to investigate the turbulent wake behind towed ship
models. For this coordinated research effort, the key objective is to obtain direct
quantitative comparison and cross-validation among the approaches. The outline of
the paper is as follows. We define the physical problem in § 2. In § 3, we use DPIV to
obtain the wake features and identify the meandering of surface-connected vortices
as a key feature of such wakes. We also obtain from these measurements the wake
profiles which are a basis for the later theoretical and numerical analyses. In § 4, we
perform an Orr–Sommerfeld stability analysis on the mean wake profile and obtain
results which help to explain the observed meandering phenomena. In § 5, DNS
are performed and the results are compared satisfactorily to the experimental and
theoretical findings. Finally in § 6, we present our conclusions.

2. Problem definition
We investigate the far wake field behind a towed ship model. We choose a reference

frame fixed in space with the tank (figure 1). The model travels in the negative
x-direction with a speed V ; the y-axis points in the beamwise direction and the z-axis
is positive upward. The origin is located at the undisturbed free surface and y = 0 is
the ship symmetry plane. For definiteness, the time texp = 0 is defined as the instant
the ship stern passes the origin.
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Length Beam Draught Beam-to-draught
L (cm) b (cm) d (cm) ratios b/d

Hull I 50 4.0 0.67 6
Hull II 50 4.0 2.0 2
Hull III 50 2.0 2.0 1

Table 1. Ship model parameters.

b b b
d

d d

Hull I Hull II Hull III

Figure 2. Stern cross-section (below the water surface) of ship models.

Our interest is to understand the underlying physics of turbulent wake at these
scales and their dependence on basic hull geometric parameters. To do this, we
consider three relatively simple ship model geometries (figure 2 and table 1) which
have the same length, L, but varying beam-to-draught ratios, b/d. Among these, ‘hull
II’ which has a semi-circular stern cross-section (below the free surface) serves as our
base model and for which we present most of the results. The results we present for
the other two hulls are primarily to indicate the dependence on b/d. All results are
for hull II unless otherwise specified.

The flow examined in this study is non-stationary, and quasi-homogeneous in the
streamwise direction. The latter is due to the greater length scale associated with
variations in the streamwise direction relative to the transverse directions. We further
assume that the statistics are symmetric with respect to the centre-plane y = 0, except
for specific meandering quantities which we define later (§ 3.2). Thus, at a given time
instant, statistical quantities can be obtained by averaging in the streamwise direction
at symmetric (|y|, z) positions. In the results presented, for any quantity f, its mean,
fluctuation and root-mean-square values are denoted by F , f′ and frms, respectively.

3. Experimental DPIV measurements
3.1. Experiment setup

The experimental DPIV measurements of ship model wakes are performed in a tank
which measures 240 cm in length, 74 cm across, and 70 cm in depth. It is constructed
with glass so that laser light can propagate through it. A towing carriage is located
on top of the tank, controlled via a speed adjustment motor. In our experiments, each
ship model is mounted at the lateral centre of the tank and special care is exercised
to ensure that the models are towed at zero yaw and pitch.

We use fluorescent spheres with diameters of 20 ∼ 45 µm to seed the entire tank
for DPIV imaging. An argon-ion laser is employed as the light source. The laser light
propagates through a fibre-optic link and cylindrical lens to generate a 2 mm thick
laser sheet located on a desired plane. The laser light is controlled by a high-speed
mechanical chopper, with the pulse timing signal produced by a General Pixels Video
Trigger Generator. A TI MC1134P/GN CCD B/W video camera, which captures
the seeded flow images on the ship-wake section, is directed to the EPIX 4MEG
VIDEO Framer Grabber and the Video Monitor. Finally, we use a SONY CRV
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Figure 3. Measurement uncertainties of DPIV without spatial shift: horizontal (———)
and vertical (- - - - -) fluctuation intensity as a function of particle density.

laserdisc recorder with a resolution of 768× 480 pixels and a speed of 30 Hz for the
storage and later analysis of flow images. The scaling factor in this experiment is
2.2 pixel mm−1 so that the measured wake domain is of size 350 mm× 220 mm.

For all our analyses of recorded images, we choose a 32× 32 pixel-sized window
with an 8 pixel stepping. Thus the recorded 768 × 480 pixel image field is rendered
into 96 × 60 grid points, on which velocity is calculated. In other words, the grid
spacing in experimental results is approximately 3.6 mm.

Factors such as the number of particles within the sampling window, the camera
and digitizer performance characteristics, and computational errors all affect the final
DPIV resolution. In order to estimate the level of accuracy and uncertainty of our
measured data, a series of calibration/validation tests have been performed. The
details are provided in Zhang (1996). We summarize the main results here.

The calibration tests are performed through random patterns of bright particles
captured by our image acquisition system. First, several images are captured with
no relative displacement and processed by the DPIV technique. We compile the
statistical uncertainty in the measurements in figure 3. It is clear that the uncertainty
is a function of the particle density. For the particle density of 20 ∼ 30 particles
per window in our ship wake experiments, figure 3 shows that the lowest obtainable
uncertainty is approximately 0.01 pixel. Next, we shift image pairs mechanically with
respect to each other over all the possible displacements in the 32× 32 pixel window.
The results are plotted in figure 4. Comparing these results, we find that as the
displacements increase, the associated uncertainties increase as well.

Our experimental resolution is obtained from the results shown in figures 3 and
4. For example, if the model speed is 25 mm s−1, the maximum displacement should
be 25/30 = 0.83 mm, or 0.83× 2.2 ≈ 1.8 pixels. By checking figure 4, we find that the
maximum root-mean-square displacement error is 0.02/2.2 ≈ 0.009 mm, or maximum
velocity error is 0.009× 30 ≈ 0.3 mm s−1. On the other hand, the minimum displace-
ment can be obtained from figure 3, which is 0.01/2.2 ≈ 0.005 mm. Thus, the minimum
detectable velocity is 0.005× 30 ≈ 0.2 mm s−1. In this DPIV experiment, the associ-
ated dynamic range, the ratio of maximum to minimum measurable displacements, is
0.83/0.005 ≈ 170.
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Figure 4. Measurement uncertainties of DPIV with spatial shift: fluctuation intensity as a function
of displacement for particle densities of 8 (———), 12 (- - - - -), 22 (– · – · –), 34 (· · · · · · ·),
45 (−−− −−−) and 65 (−··− ··−) particles per window.

Finally we note that the surfactants which exist on the free surface may in some
way affect our velocity measurements near the free surface. To remove these effects,
we inject some dish detergent on the free surface and sweep the surfactants to a drain
located at one end of the tank which has the same level as the water level in the tank.
This procedure is repeated frequently between runs.

3.2. Experiment results

Due to considerations of the tank dimensions and experimental setup, we select a
single towing speed in the experiments corresponding to V = 25 mm s−1. Based on
this speed and the model beam, b, the Reynolds and Froude numbers are respectively
Re ≡ Vb/ν ≈ 1000 and Fr ≡ V/√gb ≈ 0.04. Here ν is the kinematic viscosity and g
is the gravitational acceleration. Hereafter, all the results we present are normalized
by V and b.

At each distance X behind the ship model (cf. figure 1), DPIV measurements
are performed separately at five horizontal planes (z/b = −0.05, −0.13, −0.21,
−0.28 and −0.41) and five vertical planes (y/b = 0, 0.1, 0.15 0.23 and 0.36). We
remark that measurements have also been performed at longitudinal cuts (x/b =
const), from which the results are found to be essentially the same as those from
z/b = const and y/b = const plane measurements (Zhang 1996) and will not be
discussed here. Since our interest is the far wake behind the model, the lower
limit of the DPIV measurements is set at X/b = 5. Consequently, near-wake
phenomena which might be present are not available from these measurements.
The upper limit of the measurements corresponds to X/b = 20. This is imposed
by the dimensions of the tank (tank length L0/b = 60) and the model (length
L/b = 12.5).

The DPIV technique is able to produce a quantitative description of the instan-
taneous flow field at a large number of grid points with fine resolution. Figure 5(a)
shows a typical example of the results obtained, where the velocity vectors (u, v)
at the horizontal plane very close to the free surface (z/b = −0.05) are plotted.
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Figure 5. DPIV measurements of (a) velocity vector (u, v), and (b) contours of u on the horizontal
plane z/b = −0.05 at a distance X/b = 5 from the ship model.

Based on such plane velocity projections at different locations of the wake, we obtain
substantial information on both the statistical and structural aspects of the wake
flow.

Meandering feature

A salient feature observed from the DPIV is seen in figure 5, for the instanta-
neous near-surface (z/b = −0.05) horizontal velocity vector field and contours of the
longitudinal component u, which shows the meandering nature of the wake. There
are two spatial scales associated with the wake meandering: a streamwise scale, Lm,
which measures the meandering ‘wavelength’; and a lateral scale, Am, which mea-
sures the meandering ‘amplitude’. From the figure, we can estimate Lm and Am to be
approximately 4b and 0.5b respectively (at this depth).

It turns out that this meandering behaviour is one of the most prominent features
of the wake. To investigate this in more detail on the free surface, we consider the
vertical or surface-normal component of the vorticity ωz . As shown in Shen et al.
(1999), for free-surface turbulence, the surface-normal vorticity is highly coherent and
persistent and serves as a useful indicator of the underlying dynamics. Figure 6(a)
shows the contours of ωz (calculated using finite differencing of the measured velocity
components shown in figure 5a). In figure 5, the measurement is obtained at a plane
very close to the free surface (z/b = −0.05). As will be shown in § 5, while surface-
parallel vorticity components vary dramatically in the vertical direction, the variation
of surface-normal vorticity is small. Thus, ωz at this depth is a close approximation
of the connected vortices at the surface. The coherent structures of these vortices are
seen in figure 6(a). Because the mean flow is in the negative x-direction and is jet-like
with the centre located around the x-axis (cf. figure 1), vorticity in the y > 0 half-plane
is mostly negative while that in the y < 0 half-plane is positive. The meandering of
the wake flow is clear.

We next examine the meandering features at different locations of the wake
field. Figures 6(b)–6(d ) plot ωz contours at the same near-surface depth but at
different downstream distances from the ship model. As the towed model moves
away, the lateral meandering amplitude increases and the meandering becomes
more prominent. The change in the streamwise meandering wavelength, however,
is rather small. Figures 7(ai)–7(ei) examine the variation of the meandering at differ-
ent depths. As the depth increases, the meandering amplitude decreases first and then
increases.
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Figure 6. DPIV contours of ωz at the z/b = −0.05 plane at distances: (a) X/b = 5, (b) 10, (c) 15,
and (d ) 20 from the ship model.

Quantification of meandering scales

To characterize the meandering feature, we provide quantitative definitions for the
streamwise wavelength Lm and lateral amplitude Am of the meandering at a given
location based on the vertical vorticity ωz . We define Lm as the distance over which
the streamwise correlation coefficient

Rf(ξ) ≡ 〈f(x)f(x+ ξ)〉
〈f(x)f(x)〉 (3.1)

attains its (local) maximum value for f = ωz at the free surface. In the above equation,
〈 〉 denotes averaging over the horizontal DPIV measurement plane.

Figure 8 plots Rωz (ξ). As ξ increases, Rωz (ξ) decreases (from 1) reaching a minimum
around Lm/2 and then increases and reaches a local maximum value at ξ = Lm ≈
4.1b (for hull II). This is consistent with the earlier estimate from figure 6 based
on velocity contours. The value of Lm/b ≈ 4.1 corresponds to a Strouhal number
St ≡ b/(Vδtexp) ≈ 0.24. From DPIV measurements at successive horizontal planes at
increasing X/b (figure 6), results similar to figure 8 are obtained (not shown here).
From these, we find that the value of this Strouhal number changes little for different
X/b.

The lateral amplitude Am can be defined in terms of the (normalized) vorticity
enstrophy moment about the centreline:

O(x, z) ≡

∫
y

ω2
z y dy∫

y

ω2
z dy

, (3.2)

where the limits of integration in y are the outer edges of the measured field. This
enstrophy moment in general contains contributions from both the mean flow and
the meandering portion. The contribution due to the mean flow, which we denote as
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Figure 7. Contours of ωz obtained from (i) DPIV, and (ii) DNS, at planes of depth: (a) z/b = −0.05,
(b) −0.13, (c) −0.21, (d ) −0.28, and (e) −0.41. In the experiment, the distance from the ship model
is X/b = 10; in DNS, t = 15.

O, is given by longitudinal averaging (over Lm):

O(x, z) ≡ 1

Lm

∫ Lm/2

−Lm/2
O(x+ ξ′, z) dξ′. (3.3)

Finally, subtracting (3.3) from (3.2), we define the meandering amplitude Am averaged
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over Lm as

Am(x, z) ≡
√

1

Lm

∫ Lm/2

−Lm/2
(O(x+ ξ, z)− skew3O(x, z))2 dξ. (3.4)

Figure 9(a) plots the profiles of meandering amplitude Am at different distances
from the ship model. It shows that Am increases with the distance from the ship
model, consistent with the earlier observation from figure 6. Figure 9(a) also shows
that as the free surface is approached, Am first decreases and then increases. This is
also consistent with the observation from figure 7.



Free–surface turbulent wake 99

(a)

0 1 2 3 4 5 6

–1

0

1

–1

0

1

–5 –4 –3 –2 –1 0 1 2 3 4 5

–2.0 –1.6 –1.2 –0.8 –0.4 0 0.4 0.8 1.2 1.6 2.0 –2.0 –1.6 –1.2 –0.8 –0.4 0 0.4 0.8 1.2 1.6 2.0

0 1 2 3 4 5 6

–1

0

1

–2

–1

–2

0

1

–1 0 1 2

(b)

y

y

x x

(i) (ii)

Figure 10. Contours of ωz obtained from (i) DPIV and (ii) DNS, for (a) hull I
and (b) hull III. In DPIV, z/b = −0.05 and X/b = 10; in DNS, z/b = 0 and t = 15.

Effects of hull geometry

In order to investigate the effects of hull geometry, we also perform measurements
for a shallow hull (hull I, b/d = 6) and a deep hull (hull III, b/d = 1). Figures 10(ai)
and 10(bi) plot the DPIV ωz contours for hull I and hull III, respectively. Together
with figure 6(b) which is for hull II, the geometry effect is shown clearly: the
meandering behind the shallow hull is insignificant; the deep hull, on the other hand,
produces a much more prominent meandering.

Figure 8 plots the correlation coefficient Rωz (ξ) for the different hulls. Unlike hulls
II and III, a local maximum is not present in the Rωz (ξ) curve for hull I. This is due
to the weak meandering feature for hull I (figure 10). On the other hand, Rωz (ξ) for
hull III shows the sharpest trough and peak of the three hulls, again indicative of the
strong features seen in figure 10. Finally, we note that the meandering wavelength Lm
is about the same for hulls II and III (Lm/b ≈ 4.1 and 4.3 respectively).

The effect of the hull beam-to-draught aspect ratio on the meandering feature
can be summarized as follows. The prominence of the meandering (both in terms
of coherence and lateral amplitude) in general increases as b/d decreases. On the
other hand, the meandering (once established) has a wavelength (normalized by
b) that is relatively insensitive to b/d. These observations are not unexpected if
one thinks of the meandering as instabilities of a mean wake profile of (approxi-
mate) aspect ratio b/d. For small b/d, the wake flow qualitatively resembles that
behind a (long vertical) cylinder and is expected to be dominated by asymmetric
instabilities with a characteristic Strouhal number. As expected, these coherent asym-
metric features diminish as b/d increases. This consideration is the basic motiva-
tion of the Orr–Sommerfeld stability analysis of the mean free-surface wake flow
in § 4.
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Figure 11. Contours of mean velocity U(y, z) obtained from (a) DPIV, and (b) the analytical
fitting (4.27). The wake location is X/b = 10.

Mean flow velocity and velocity fluctuation intensity profiles

In addition to the turbulent structures elucidated above, the DPIV technique
also obtains statistics of the wake field. Measurements at five horizontal planes of
different depths provide streamwise and lateral velocity components, while streamwise
and vertical velocities are obtained from measurements at vertical planes with five
different lateral positions. These together provide a quantitative description of the
flow field.

Figure 11(a) plots the mean velocity U(y, z) contours on the (y, z) cross-section.
As defined in § 2, averaging is performed in the x-direction. Here and hereafter, the
averaging length is set to be the meandering wavelength Lm. For this flow, streamwise
variation is much smaller than the variations in the lateral and vertical directions, and
the change of U over the streamwise distance Lm is negligible. Not surprisingly, the
mean velocity profile has an approximately semi-circular shape with the maximum
velocity deficit located at (y = 0, z = 0).

Figures 12(ai)–12(ci) plot the contours of the fluctuation intensity of each velocity
component. Fluctuation is defined as the deviation from the mean value (averaging
over a meandering wavelength Lm), and its intensity is quantified by the root-mean-
square value. It is shown from figure 12 that the flow field is highly anisotropic. The
magnitude of largest u′ is about 3 times larger than that of v′, 5 times larger than that
of w′. More importantly, the spatial distribution of velocity fluctuation is disparate
for each velocity component. Large u′ exists at the free surface, some distance from
the centre-plane y = 0; large v′ is located on the y = 0 plane at two depths, one at
the free surface and the other some distance below; for w′, the maximum value is
located below the free surface and away from the centre-plane.

The statistics obtained here are used in the stability analysis and numerical simu-
lations that follow. The mean profiles U(y, z) are used to construct a base flow, while
the distributions of the velocity fluctuation are directly compared to the predictions
of the stability analyses and direct simulations.

4. Orr--Sommerfeld stability analysis
As observed in § 3.2, the meandering features observed behind the towed models are

indicative of those associated with the instability of the free-surface wake. To investi-
gate this, we perform a linear Orr–Sommerfeld (OS) stability analysis of the mean
wake profiles obtained from the DPIV measurements. To obtain direct comparisons,
we start with the Navier–Stokes equations and apply linearized free-surface boundary
conditions corresponding to the same Reynolds and Froude numbers as in § 3.
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Figure 12. Contours of (a) streamwise velocity fluctuation u′rms(y, z), (b) lateral velocity fluctuation v′rms(y, z), and (c) vertical velocity fluctuation
w′rms(y, z), obtained from: (i) DPIV, (ii) OS, and (iii) DNS. In DPIV, X/b = 10; in DNS, t = 15.
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4.1. Mathematical formulation

Governing equations

For an incompressible, viscous, three-dimensional flow, the governing differential
equations are Navier–Stokes equations:

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+

1

Re
∇2ui, (4.1)

and the continuity equation

∂ui

∂xi
= 0, (4.2)

where (u1, u2, u3) = (u, v, w) are the velocity components and p the dynamic pressure.
We assume that the wake flow consists of a mean parallel flow U(y, z) and a

perturbation part:

u = U(y, z) + u′, v = v′, w = w′, p = p′, η = η′, (4.3)

where η is the free-surface elevation. The linearized governing equations for the
perturbation variables are obtained as

∂u′

∂t
+U

∂u′

∂x
+ v′

∂U

∂y
+ w′

∂U

∂z
= −∂p

′

∂x
+

1

Re
∇2u′, (4.4)

∂v′

∂t
+U

∂v′

∂x
= −∂p

′

∂y
+

1

Re
∇2v′, (4.5)

∂w′

∂t
+U

∂w′

∂x
= −∂p

′

∂z
+

1

Re
∇2w′, (4.6)

∂u′

∂x
+
∂v′

∂y
+
∂w′

∂z
= 0. (4.7)

By taking divergency on both sides of equations (4.4)–(4.6) and invoking (4.7), we
obtain the governing Poisson equation for the perturbed pressure p′:

2
∂v′

∂x

∂U

∂y
+ 2

∂w′

∂x

∂U

∂z
= −∇2p′. (4.8)

By performing ∇2 (4.5) and ∇2 (4.6) and using (4.8), we finally obtain the governing
equations for v′ and w′:

∂

∂t
(∇2v′) + ∇2

(
U
∂v′

∂x

)
=

∂

∂y

(
2
∂v′

∂x

∂U

∂y
+ 2

∂w′

∂x

∂U

∂z

)
+

1

Re
∇4v′,

∂

∂t
(∇2w′) + ∇2

(
U
∂w′

∂x

)
=

∂

∂z

(
2
∂v′

∂x

∂U

∂y
+ 2

∂w′

∂x

∂U

∂z

)
+

1

Re
∇4w′.

 (4.9)

Note that after v′ and w′ are solved, u′ can be obtained from the continuity equation
(4.7). We also remark that unlike in the two-dimensional case, the introduction of
stream functions will not reduce equation number here. Hence, we continue with the
primitive-variable formulations for the stability analysis.

Next we consider perturbations propagating parallel to the mean flow in the wavy
form

f′(x, y, z, t) = f̃(y, z) exp(i(kx− ωt)), (4.10)

where f(x, y, z, t) can be ui(x, y, z, t), p(x, y, z, t) and η(x, y, t). The governing equation
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(4.9) finally becomes the OS equation[
Uk

(
∂2

∂y2
+

∂2

∂z2
− k2

)
+ 2k

∂U

∂z

∂

∂z
+ k

(
∂2U

∂z2
− ∂2U

∂y2

)
+

i

Re

(
∂2

∂y2
+

∂2

∂z2
− k2

)2 ]
ṽ −

(
2k

∂U

∂y∂z
+ 2k

∂U

∂z

∂

∂y

)
w̃

= ω

(
∂2

∂y2
+

∂2

∂z2
− k2

)
ṽ,[

Uk

(
∂2

∂y2
+

∂2

∂z2
− k2

)
+ 2k

∂U

∂y

∂

∂y
+ k

(
∂2U

∂y2
− ∂2U

∂z2

)
+

i

Re

(
∂2

∂y2
+

∂2

∂z2
− k2

)2 ]
w̃

−
(

2k
∂U

∂y∂z
+ 2k

∂U

∂y

∂

∂z

)
ṽ = ω

(
∂2

∂y2
+

∂2

∂z2
− k2

)
w̃,



(4.11)

which represents an eigenvalue problem with the eigenvalue ω = ωr + iωi and
eigenvectors ṽ and w̃. From (4.10), positive ωi leads to growing perturbations, which
indicate instability.

Free-surface boundary conditions

At the free surface, consistent with the low Froude number in the wake flow
considered here, we apply linearized kinematic and dynamic boundary conditions at
z = 0 (cf. Shen et al. 1999):

∂η

∂t
+
∂(uη)

∂x
+
∂(vη)

∂y
− w = 0, (4.12)

p− η

Fr2
− 2

Re

∂w

∂z
= 0, (4.13)

1

Re

(
∂u

∂z
+
∂w

∂x

)
= 0, (4.14)

1

Re

(
∂v

∂z
+
∂w

∂y

)
= 0. (4.15)

Here the kinematic boundary condition (4.12) states that no particle leaves the free
surface, while the dynamics boundary conditions (4.13)–(4.15) indicate the stress
balance across the free surface.

By using the decomposition (4.3), we obtain the linearized free-surface boundary
conditions for perturbations:

∂η′

∂t
+U

∂η

∂x
− w′ = 0, (4.16)

p′ − η′

Fr2
− 2

Re

∂w′

∂z
= 0, (4.17)

∂u′

∂z
+
∂w′

∂x
= 0, (4.18)

∂v′

∂z
+
∂w′

∂y
= 0. (4.19)
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To be consistent with the governing OS equation (4.11) which does not contain p′
and u′, we next seek simplified free-surface boundary conditions. By performing ∂/∂x
on both sides of (4.18) and invoking (4.19) and (4.7), we eliminate u′:

∂2w′

∂y2
+
∂2w′

∂x2
− ∂2w′

∂z2
= 0. (4.20)

The pressure p′ in (4.17) is eliminated as follows. We first take (∂2/∂x2 + ∂2/∂y2) of
(4.17) and obtain

∂2p′

∂x2
+
∂2p′

∂y2
− 1

Fr2

(
∂2

∂x2
+

∂2

∂y2

)
η′ − 2

Re

(
∂2

∂x2
+

∂2

∂y2

)
∂w′

∂z
= 0. (4.21)

Next we introduce ∂/∂x of (4.4) and ∂/∂y of (4.5) into the above equation. By using
the continuity equation (4.7) and the fact that ∂U/∂z = 0 (there is no mean shear at
the free surface), we finally obtain(

∂

∂t
+U

∂

∂x

)
∂w′

∂z
− 2

∂v′

∂x

∂U

∂y
− 1

Fr2

(
∂2

∂x2
+

∂2

∂y2

)
η′

− 1

Re

(
3
∂2

∂x2
+ 3

∂2

∂y2
+

∂2

∂z2

)
∂w′

∂z
= 0. (4.22)

For the wavy disturbance (4.10), boundary conditions (4.16), (4.22), (4.20) and (4.19)
become

kUη̃ + iw̃ = ωη̃, (4.23)

i

Fr2

(
∂2

∂y2
− k2

)
η̃+

[
kU +

i

Re

(
3
∂2

∂y2
+

∂2

∂z2
− 3k2

)]
∂

∂z
w̃−2k

∂U

∂y
ṽ = ω

∂w̃

∂z
, (4.24)(

∂2

∂y2
− ∂2

∂z2
− k2

)
w̃ = 0, (4.25)

∂w̃

∂y
+
∂ṽ

∂z
= 0. (4.26)

Numerical implementation

By using a fourth-order finite-difference scheme, the governing OS equation (4.11)
is solved as an eigenvalue problem subject to the free-surface boundary conditions
(4.23)–(4.26) and free-slip boundary conditions at the bottom z = −Lz . In the trans-
verse direction far away, y = ±Ly/2, a zero-disturbance condition is used.

Because of the symmetry of the mean flow U about the centre-plane y = 0, and
because of the linearity of this problem, we can decompose the disturbance into a
symmetric mode and an anti-symmetric mode. For the symmetric mode, u′, w′, p′ and
η′ are symmetric about y = 0 and v′ is anti-symmetric, while for the anti-symmetric
mode the opposite holds. This decomposition reduces the computation domain by
half and facilitates the numerical calculation.

To solve for the OS equation, we need the value and spatial derivatives of the mean
velocity at all the grid points. To obtain these from DPIV measurements (on discrete
planes and at a relatively small number of points, cf. figure 11a), we fit an analytical
form to the data:

U(y, z) ≈ −U0 exp(−σy2)cosh−2(γz). (4.27)

Here U0 is the maximum velocity deficit; σ and γ are parameters specifying the spatial
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Figure 13. OS growth rate ωi as a function of wavenumber k for hulls I, II and III. For hull II
———, Ly = 4, Lz = 2, Ny = 24, Nz = 64; - - - - -, Ly = 4, Lz = 2, Ny = 18, Nz = 48; · · · · · · ·,
Ly = 4, Lz = 2, Ny = 12, Nz = 32; – · – · –, Ly = 6, Lz = 2, Ny = 24, Nz = 64; −··− ··−, Ly = 4,
Lz = 3, Ny = 24, Nz = 64.

expansion of the wake flow. For the case shown in figure 11(a), a least-square best fit
is obtained with U0 = 0.85, σ = 3.09, and γ = 2.85. The analytical profile (4.27) with
these values is plotted in figure 11(b). The agreement with the data in figure 11(a) is
excellent (with a correlation coefficient of ∼ 98%).

In the OS solver, we use a Ny×Nz = 24× 64 grid for a computational domain size
Ly/2×Lz = 2× 2. The choice of these parameters is justified in the convergence tests
for the hull II case shown in figure 13, where the growth rates for anti-symmetric
modes ωi are plotted as a function of wavenumber k. We first fix the domain size and
vary the grid resolution. It shows clearly that as the grid becomes finer, the solution
converges fast and the current 24×64 grid is sufficient. We then test different domain
size with the grid number fixed. The fact that the variation in domain size changes
the results only in a negligible way shows that our domain size is large enough such
that the effects of far boundaries are small.

Note that compared to that in the y-direction, the resolution in the z-direction
is much finer. This is necessitated by the requirement to resolve the free-surface
boundary layer accurately, which is discussed in § 5. We remark again that the same
Re = 1000 and Fr = 0.04 as the experiments are used in the stability analysis.

4.2. Results

The OS equations are solved at different wavenumbers k. It is found that instability
is caused by anti-symmetric modes, which directly correspond to the meandering
pattern observed from DPIV measurement. Figure 14 shows such an example. The
unstable mode at k = 1.0 for hull II with the maximum velocity fluctuation magnitude
0.1U0 is plotted in figure 14(a). The anti-symmetry about y = 0 and the sinusoidal
variation in the x-direction are clearly shown. When superimposed upon the mean
flow, we obtain the surface contours of u plotted in figure 14(b) which resemble the
experimental observation (figure 5b).

Figure 13 shows the growth rate ωi as a function of wavenumber k for all three
hulls. As a key result, we observe that the instability region and the growth rates
of unstable modes are highly dependent on the hull geometry. The wake of the
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Figure 14. Surface contours of streamwise velocity u: (a) obtained from the OS unstable mode at
k = 1.0, with the maximum velocity fluctuation magnitude 0.1U0; and (b) superimposition of the
OS unstable mode upon the mean flow.
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Figure 15. Contours of the OS unstable modes of velocity components: (a) u′rms(y, z),
(b) v′rms(y, z), and (c) w′rms(y, z) for k = 1.5.

shallow hull (hull I) has a relatively small portion of unstable wavenumbers with low
growth rates. The wake flows for the circular (hull II) and deep (hull III) hulls are
much more unstable; of the two, the unstable modes for hull III grow faster. These
results are consistent with the experimental observations shown in figures 6 and 10
in terms of the meandering prominence and lateral amplitude. From figure 13 we
observe that the most unstable modes for hulls II and III occur at kmax ≈ 1.0 and 1.1,
corresponding to Lmax ≈ 6.3 and 5.7 respectively. These compare qualitatively (only)
to the experimentally determined values of Lm ∼ 4 for the two hulls. Clearly, the OS
prediction does not capture the nonlinear processes in the (subsequent) evolution of
the turbulent wake.

Figures 12(ai)–12(cii) plot the spatial distributions of the most unstable mode
(at k = 1) for each velocity component. Here and hereafter, the magnitude of a
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Figure 16. Contours of (a) mean velocity U(y, z) and the OS unstable modes for velocity
components: (b) u′rms(y, z), (c) v′rms(y, z), and (d ) w′rms(y, z) for hull I. k = 0.6.

velocity component of an unstable mode is defined as u′rmsi = | ũi |/
√

2 (cf. (4.10))
and is normalized to satisfy u′iu′i|max = 1. Since the mode is anti-symmetric, maximum
u′ and w′ are located some distance from the centre-plane while maximum v′ occurs
at y = 0. Vertically, maximum u′ occurs at the free surface, while maximum v′ and
w′ are below the surface. Among the three components, u′ has the largest magnitude
while w′ is smallest. These features are completely consistent with those obtained in
the DPIV measurements (figures 12ai–12ci).

It is of interest to plot (in figure 15) the spatial distributions of the unstable mode
at wavenumber k = 1.5 corresponding to the experimentally determined value of
Lm ≈ 4.1. Comparing with figures 12(aii)–12(cii), the distributions are very similar
and the mode shapes do not appear to be sensitive to the wavenumber.

Finally, we consider the effects of b/d on the unstable mode shape. These are
plotted in figures 16 and 17, respectively for hulls I and III. Comparing these with
figures 12(aii)–12(cii), we see that the effect of the aspect ratio of the wake is mainly
in the vertical distribution which scales approximately with the base flow. Except for
the fact that v′ for hull I has its maximum at the free surface, the overall difference
between the three hull geometries is small. This, together with the aforementioned
insensitivity of the unstable mode distribution to the wavenumber, leads to the
conclusion that the shape of the unstable modes obtained here is generic for such
wake flows. The growth rate, on the other hand, may differ substantially as shown in
figure 13.

The present Orr–Sommerfeld analysis provides strong evidence that the meandering
features observed in the experiments are initiated by the inherent instability of the
mean wake. The evolution leading to the final flow involves nonlinear processes not
present in the analysis. These are included in the direct numerical simulations which
we describe in the next section.
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Figure 17. Contours of (a) mean velocity U(y, z) and the OS unstable modes for velocity
components: (b) u′rms(y, z), (c) v′rms(y, z), and (d ) w′rms(y, z) for hull III. k = 1.0.

5. Direct numerical simulations
To understand the generation and development of the wake features and to obtain

quantitative comparisons with measurement, we perform direct numerical simulations
(DNS) of the evolution of the turbulent wake. To aid the understanding of the
underlying mechanisms, DNS also provides detailed information about the three-
dimensional flow field and statistics only partially available from DPIV.

5.1. Numerical method

In DNS, the Navier–Stokes equations (4.1) together with the continuity equation (4.2)
are solved using finite-difference discretizations. We use a sixth-order finite-difference
scheme in the horizontal directions and a second-order scheme in the vertical direction.
The Navier–Stokes equations are marched in time using a second-order Runge–
Kutta scheme. At each timestep, the pressure is solved via a Poisson equation,
which is obtained by taking divergence of the Navier–Stokes equations and invoking
the continuity equation. The details of the numerical algorithm are provided in
Shen et al. (1999).

At the free surface, the (linearized) kinematic boundary condition (4.12) and dy-
namic boundary conditions (4.13)–(4.15) are applied, while at the bottom of the
domain, we use a free-slip condition. By assuming that longitudinal variations of
flow statistics over the domain length Lx are small, and that turbulence correlations
(except for the meandering) are negligible over half of the domain, we employ a
periodic condition in the horizontal directions.

The computational domain sizes are Lz = 2 vertically, Ly = 4 laterally, and Lx =
3.33π, 2π and 1.82π streamwise for hulls I, II and III, respectively. The streamwise
lengths of each hull correspond to the wavelengths of their most unstable modes
found in the Orr–Sommerfeld analysis (figure 13). We use a 128 (streamwise) ×
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Figure 18. Time evolution of free-surface elevation obtained from DNS with: a 128× 96× 128 grid
(———), a 64 × 48 × 64 grid (- - - - -), and a 64 × 48 × 64 grid with fully-nonlinear free-surface
boundary conditions (– · – · –).

96 (lateral) × 128 (vertical) grid. With a timestep 0.005, the simulations are carried
out from t = 0 to 25.

Careful validation has been performed to ensure that the present numerical ap-
proach obtains converged results with all the dynamically significant scales resolved
(cf. Shen et al. 1999). Based on viscosity and kinetic energy dissipation rate, the Kol-
mogorov scale is estimated to be around 0.02, which is close to the grid resolution of
our DNS. Figure 18 shows another example, where the time evolution of free-surface
elevation ηrms is examined. When the number of grid points in each dimension is
reduced by a factor of 2, the resulting change in ηrms is small. This shows that the
current grid resolution is sufficient. Figure 18 also compares the results of the present
numerical method using linearized free-surface boundary conditions with a numerical
scheme with fully nonlinear free-surface boundary conditions (cf. Zhang 1996). The
negligible difference in ηrms justifies the free-surface linearization. Under the present
experimental conditions, Fr = 0.04, a small effect of free-surface deformation is ex-
pected (ηrms scales as Fr2 at low Froude numbers). In an earlier study (Shen et al.
1999), it is found that for low Froude numbers, the difference between a deformable
free surface and a free-slip plate is small except for the pressure–strain correlation in
the Reynolds-stress evolution.

As a cross-validation between DNS and OS analysis, we perform numerical simu-
lations for the interaction between the mean flow and the unstable modes obtained in
§ 4. Figure 19 compares the growth rates of the unstable modes with the theoretical
prediction exp(ωit). For each hull geometry, we initially input the most unstable
mode with the maximum magnitude 10% of the mean flow deficit. As indications of
mode growth, we examine the maximum values of the fluctuations of each velocity
component u′rmsi,max as well as the averaged fluctuation kinetic energy

Ef ≡ 1

LyLz

∫ 0

−Lz

∫ Ly/2

−Ly/2
u′2 + v′2 + w′2

2
dy dz. (5.1)

As shown in figure 19, for all three hull geometries and for all the quantities exam-
ined, the growth of unstable modes agrees well with the theoretical prediction (the
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Figure 19. Comparison of the growth rates of unstable modes between OS prediction exp(ωit)
(———) and DNS results of: u′rmsmax(t) (- - - - -), v′rmsmax (t) (– · – · –), w′rmsmax (t) (−··− ··−), and Ef(t)
(· · · · · · ·), for (a) hull I, (b) hull II, and (c) hull III. DNS results are normalized by initial values.

errors are within 4%). Considering the substantial difference between the numerical
discretization schemes of the OS analysis and DNS, this agreement is excellent and
the two studies cross-validate each other.

5.2. Initial condition

To perform a direct quantitative comparison between the experimental measurements
and numerical simulations, an essential task is the construction of the initial flow field
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for simulations. A desirable approach is to match the initial field as closely as possible
to the experimental measurements at an early stage, let the DNS run for some time,
and then compare the numerical result to the experimental measurements at a later
stage. A typical example is the simulation of grid turbulence by Kwak, Reynolds &
Ferziger (1975), where the turbulence fluctuation intensity and energy spectrum are
initially matched and finally compared to wind-tunnel measurements (Comte-Bellot
& Corrsin 1971).

This approach of fully matching the initial condition to experimental input,
however, is limited to flows with a simple configuration. As shown in § 3, the tur-
bulent wakes behind the ship models are rather complicated. The velocity field
is highly anisotropic and heterogeneous: the magnitude of u′ is generally much
larger than that of v′ and w′, while the spatial distributions of the fluctuation mag-
nitudes of each velocity component are substantially different; the variations in
the lateral and vertical directions are large; in the streamwise direction, although
quasi-homogeneity can be assumed, the presence of meandering complicates the
representation of fluctuation distribution. Considering all these facts, the full con-
struction of the initial wake field based on limited experimental inputs is a formidable
task.

We adopt an alternative approach for the construction of the initial field: at t = 0
we match only the mean velocity profile to the experimental measurement, by using
the expression (4.27). For turbulence fluctuations, we simply add to the mean flow a
divergence-free random velocity noise, with the fluctuation profile proportional to a
prescribed function

F(y, z) = exp(−σy2) cosh−2(γz) tanh(γz), (5.2)

which is chosen to constrain the fluctuation within the wake and to forbid initial
fluctuation at the free surface. This velocity noise serves only as the seeds for
turbulence, and it is expected that real turbulence will develop as the simulation
proceeds. After becoming fully developed, the flow field will then be compared to
experimental measurements.

An interesting issue in setting up the DNS initial condition is the seeding for the
eventual development of the wake meandering. Based on the experimental observation
in § 3 and the stability analysis in § 4, we expected that a wake that is initially
homogenous in the streamwise direction will, in time, develop distinct meandering
features. The time required for this development depends on the (initial) noise in the
turbulence flow and the growth rate of the unstable mode(s). For practical purposes,
this process can be modelled in the DNS by the initial introduction of small-amplitude
unstable mode(s).

In the present DNS, the initial velocity field is constructed using a superposition
of three components:

uinitial
i = umean

i + εranuran
i + εOSuOS

i , (5.3)

where umean
i is the mean flow given by (4.27), uran

i the random turbulence seeds,
and uOS

i the unstable mode obtained from OS analysis. For definiteness, we normalize
uran
i and uOS

i such that their maximum fluctuation magnitudes are of unit value,
while εran and εOS are small parameters. In the present study we choose εOS = 0.1
and εran = 0.088. The value of εOS is somewhat arbitrary and primarily (with εran)
determines the time and position offset between DNS and DPIV that offers a good
fit (see figure 7). The value of εran is selected based on a fitting of the evolution of the
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Figure 20. Comparison of time evolution of total kinetic energy between DNS (———) and
DPIV (◦). t0 ≈ 5.0.

total kinetic energy

E ≡ 1

LxLyLz

∫ 0

−Lz

∫ Ly/2

−Ly/2

∫ Lx/2

−Lx/2
u2 + v2 + w2

2
dx dy dz (5.4)

between the DNS and the DPIV. With these values of the two small parameters, a
reasonable (an explicit optimization is not performed) fit is obtained with a DNS
time offset of t0 ≈ 5.0 where (X/b)DPIV = (t− t0)DNS. With this offset, the comparison
of the evolution of E is shown in figure 20. The comparison is excellent. Hereafter we
compare the DPIV/DNS results at (X/b)DPIV = (t − t0)DNS = 10 (i.e. at tDNS = 15),
when the turbulent field has fully developed in the simulation.

5.3. Numerical results

Turbulence statistics

Figures 12(aiii)–12(ciii) plot the fluctuation profiles for each velocity component
obtained from DNS. Note that as pointed out in § 5.2, the initial distribution of
velocity fluctuations is non-physical (not plotted here) and serves only as the seed for
the development of turbulence. As the simulation continues, real turbulence develops.
It is shown in figure 12(iii) that at t = 15, large u′ exists near the free surface, at the
two sides of the centre-plane y = 0; large w′ is also located at some distance from the
centre-plane, but below the free surface; v′ has its maximum value below the surface
on y = 0. Comparing this to figures 12(i) and 12(ii), it is found that the numerical
results agree well with experimental measurement and stability analysis in both the
magnitude and spatial variation of the fluctuations for all the velocity components.
A small but discernible difference between the DNS and the DPIV and OS results is
that the velocity maxima of the former are at a greater distance from the centre-plane.
This can be explained since in the DNS there is additional time (the offset time t0
discussed in § 5.2) for lateral diffusion to occur.

Figure 21 plots the contours of vorticity fluctuations. In the bulk flow below, the
difference between ω′rmsx , ω′rmsy and ω′rmsz is relatively small, especially when compared
to the velocity field which is highly anisotropic. Near the free surface, however, the
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Figure 21. Contours of fluctuations of vorticity components obtained from DNS:
(a) ω′rmsx ; (b) ω′rmsy ; (c) ω′rmsz . t = 15.

fluctuations have disparate behaviours for different vorticity components: ω′rmsx and
ω′rmsy decrease dramatically over a thin region adjacent to the surface, while the
vertical variation of ω′rmsz diminishes at the surface (the contours lines of ω′rmsz are
perpendicular to the free surface in figure 21a). This is because the free-surface zero-
stress dynamic boundary condition together with the low Froude number require ωx,
ωy and ∂ωz/∂z to vanish at the free surface (cf. Shen et al. 1999, 2000). The thin region
where the free-surface viscous boundary conditions are felt is called the free-surface
inner layer. The free-surface outer layer is the region over which the surface blockage
effect associated with the free-surface kinematic boundary condition is felt. Over the
outer layer, the vertical velocity component w decreases, as shown in figure 12(c).

The multi-layer structure of free-surface wakes is illustrated more clearly in fig-
ure 22, which plots the vertical variations of w′rms, ω′rmsx and ω′rmsy at y = 0, −0.25,
−0.5 and −0.75. Note that near the free surface, which is the focus of the present
study, the statistics are well-resolved and converged. In the bulk flow region, more
ensemble simulations may be required to obtain statistical convergence (as evident
from the wavy variation). It is shown that the vanishing of w′rms, ω′rmsx and ω′rmsy

towards the free surface prevails for all the lateral locations examined. For this wake
flow, the thicknesses of the inner and outer layers are approximately 0.05 (figure 22a)
and 0.15 (figures 22b and 22c), respectively.

Finally we examine the turbulence length scales in the wake. For variables f = ui,
ωi, the streamwise Taylor microscales are defined as

λf ≡
√

−2

∂2Rf(ξ)/∂ξ2|ξ=0

, (5.5)

where the correlation function Rf(ξ) is defined in (3.1). (Because of the meandering in
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the wake, the macroscale, say defined by Λf ≡ ∫ Lx/20
Rf(ξ) dξ, tends to be dominated

by Lm, and is not as useful in the present context.)

Figure 23 plots the contours of λui and λωi . It is shown that except for λu and
λωx , which have maximum values along the periphery of the wake, the variation of
microscales is relatively small in the flow below. As the free surface is approached, λw
and λωz decrease while λωx and λωy increase. The former is related to the stretching
of surface-connecting vortices, while the latter indicates the flattening of horizontal
vortex structures as they impinge on the free surface. These phenomena have also
been observed in other types of free-surface turbulent flows (cf. Handler et al. 1993
for open-channel flow and Shen et al. 1999 for the interaction between a shear flow
and a free surface), and can be regarded as generic features of free-surface turbulence.
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Figure 23. Contours of Taylor microscales for: velocity components (ai) λu, (bi) λv , (ci) λw;
and vorticity components (aii) λωx , (bii) λωy , (cii) λωz , obtained from DNS results at t = 15.

Turbulence structures

As shown in § 3, DPIV measures the two-dimensional instantaneous velocity field,
which provides important insights into turbulence features in the wake. DNS, on the
other hand, generates three-dimensional instantaneous datasets for all the physical
variables computed. This greatly facilitates the illustration of turbulence structures in
the wake, which we investigate next.

At the instant t = 15 when the wake turbulence has fully developed, figures 7(aii)–
7(eii) plot ωz contours at different depths corresponding the locations measured by
DPIV. Comparing these with figures 7(ai)–7(ei), it is found that the DNS results agree
with the experiment with remarkable accuracy (note that the spatial resolution of
DNS is higher than that of DPIV and thus DNS provides more detailed structures).
Figure 24(c) plots the surface ωz contours at the same time. Comparison between
figures 24(c) and 7(aii) shows that the ωz signature at z = −0.05 clearly resembles
that at the free surface (the correlation coefficient is greater than 97%). This justifies
the approach of approximating the surface ωz feature by the near-surface one, which
is used by the experimental study in § 3. Indeed, the ωz contours preserve the same
configuration at all the depths examined in figure 7(ii), except for the variation in
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Figure 25. Contours of (a) ωx and (b) ωy at (i) z = −0.03 and (ii) z = −0.13, obtained from
DNS results at t = 15.

magnitude. This suggests that surface-connected vortices are perpendicular to the free
surface.

The features of horizontal components of vorticity, on the other hand, do not
preserve their configuration as the depth changes. As shown in figure 25, ωx and ωy
differ considerably at two planes separated by only a small distance 0.1.

The above scenario is elucidated more clearly in figure 26, where vortex lines of
coherent vortex structures are plotted. To present the structures more clearly, we show
here only selected structures. The surface-connected vortices, which are perpendicular
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Figure 26. Free-surface ωz contours and the vortex lines of underlying coherent vortex structures.
t = 15.

to the free surface, are clear. They are found to be very persistent and are the most
prominent surface signature of the wake flow. A careful examination shows that ωz
for surface-connected vortices decays at a slow rate closer to the laminar case than
the turbulent one, in a way very similar to the shear-flow free-surface turbulence case.
Since the latter has been studied in some detail by Shen et al. (1999), the decay of
surface ωz in the wake will not be taken up here.

Next we use the ωz signature to investigate the wake meandering in DNS results.
Figure 24 plots the time evolution of surface ωz contours. As pointed out earlier,
initially we input a small-magnitude unstable mode obtained from the OS analysis. As
time increases, a meandering pattern forms. Compared to the experiment (figure 6),
the amplitude of the meandering is relatively small here since the meandering is
still developing. Nevertheless the meandering pattern is clear at late stages of the
simulation.

The meandering of the wake is also demonstrated by the ωz contours below the
free surface, which are plotted in figure 7(ii). On departing from the free surface,



118 L. Shen, C. Zhang and D. K. P. Yue

the meandering amplitude is found to decrease first and then increase. This is in
agreement with the experimental result plotted in figure 7(i).

In a way similar to the experimental study, we quantify the meandering amplitude
based on ωz with the definition (3.4). The results are plotted in figure 9(b). The
development of meandering is shown clearly by the increasing of Am with time. Con-
sistent with figures 6, 7 and 24, the meandering amplitude in the DNS is smaller than
the experimental value shown in figure 9(a). Vertically, we find that the meandering
amplitude is largest at the free surface. Away from the surface, Am decreases first,
reaching a local minimum at z = −0.15 ∼ −0.12, and then increases. This variation
is in agreement with the sparse data obtained by experiment (figure 9a). (A similar
comparison of the meandering length Lm (cf. figure 8) can, in principle, also be made.
In this case, however, with streamwise-periodic computational boundaries, such cor-
relations are dominated by the computational domain length, and the comparison is
not as meaningful.)

Finally, we show the effects of hull geometry on the meandering. Figure 10(ii) plots
the surface signature of ωz obtained from the DNS of the shallow hull (hull I) wake
and the deep hull (hull III) wake. They both resemble well the experimental results
shown in figure 10(i). Compared with the DNS result of hull II (figure 24), it is found
that hull III has more intensive meandering while the meandering in hull I is less
obvious. This is in agreement with the experimental study (figure 10i) and the OS
analysis (figure 13). We remark that the meandering amplitude is the major effect of
the beam-to-draught ratio. Other statistical and structural properties of the wakes of
hulls I and III have been extensively examined. They possess the same characteristics
as the hull II case detailed in the present paper and will not be taken up here.

6. Conclusions
We have performed a coordinated experimental, theoretical and numerical study of

the turbulent wake flow behind towed ship models. In the experiment we use DPIV
to obtain instantaneous whole-field measurements at multiple horizontal and vertical
planes. In the theoretical study, we perform an Orr–Sommerfeld stability analysis for
the mean wake profile using free-surface boundary conditions. Finally, we perform
direct numerical simulations of the Navier–Stokes equations using the DPIV and
OS data to construct the initial condition. To allow direct quantitative comparisons,
the DPIV, OS and DNS are performed at the same Reynolds and Froude numbers
corresponding to the experimental conditions. Good to excellent comparisons are
obtained.

The most significant feature of wake flow is shown to be a meandering structure with
well-defined (longitudinal) wavelength and (lateral) amplitude. The former satisfies
a Strouhal scaling with respect to model beam and forward speed, while the latter
is found to depend on downstream distance (or ‘age’) of the wake (and the depth).
The DPIV quantification of these agrees well with OS predictions and DNS results.
These latter analyses provide the mechanism and confirmation for the development
of meandering features.

From the whole-field statistics, we quantify the highly anisotropic nature of the tur-
bulent wake. Among the velocity components, the streamwise fluctuation dominates
with maxima located at the free surface and offset from the centre-plane. Compared
to the velocity, the vorticity field is less anisotropic except within a thin surface layer
wherein the horizontal vorticity components diminish rapidly while vertical vorticity
connects and becomes persistent. We also obtain spatial distributions of the velocity
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and vorticity length scales, which show the effects of the vertical/horizontal stretching
respectively of the vertical/horizontal vorticities near the surface.

To understand the effects of hull geometry, we consider three hulls with different
beam-to-draught ratios. For a given beam, the meandering amplitude is shown to
increase as the draught increases. This result can be anticipated from the Orr–
Sommerfeld instability of the mean wake.

We remark that the present study is for small model scales at relatively low Reynolds
and Froude numbers. This allows us to perform and obtain direct comparisons among
the DPIV, DNS and OS. Under these conditions, the meandering of the wake caused
by the instability of the wake shear flow is a predominant feature. For real ship
wakes with much higher Reynolds numbers, the wake flow will be significantly more
turbulent – the same instability mechanism is still expected (as supported by OS) but
the manifestation of the meandering might be obscured by (other) turbulent processes.
Our main objective here is a mechanistic investigation, which serves as a first step
towards future study at larger scales. The Orr–Sommerfeld solver developed in this
paper can be readily applied to high Reynolds and Froude numbers. Experimental
extensions to higher Reynolds/Froude numbers are being pursued by a number of
research groups (e.g. Dong, Katz & Huang 1997). Extension of the DNS to more
realistic scales using large-eddy simulation with specialized free-surface subgrid-scale
models (cf. Shen & Yue 2001) is now underway.

This research was financially supported by the Office of Naval Research.
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